A brief survey of *a-priori* approaches to bias in Ensemble Numerical Prediction Systems

Malaquías Peña
IMSG at EMC/NCEP/NWS/NOAA

Acknowledgments: Y. Zhu, D. Hou, W. Kolczynski, E. Kalnay, Z. Toth

Why bias in DA and short time forecasts matter?

To mention a few reasons

- (Re) analyses are generated in the DA process. Forecast bias estimations often rely on them.
- Origin of systematic errors in long-range predictions can be tracked down to small systematic errors at short forecast lead times.
- Attribution. Generally it is easier to isolate the physical processes misrepresented at short lead times.

Numerical Weather Prediction System

Deterministic

Numerical Climate Prediction System

Weakly coupled

For forecast times of weeks and months into the future probabilistic forecasts are all that can be attempted

Numerical Ensemble Prediction System

Ensemble-Deterministic

Forecast bias in NWP systems: three general ways to approach it

- Direct bias mitigation: Get the bias and remove it from the forecast. Bias estimation is computed offline or on-line
- Account for model errors: Add missing sub-grid variability to forecasts. Generally in combination with initial errors in the ensembles
- Shadowing: Find orbit in the model attractor such that its evolution maps back close to nature.
 Challenge to find a transformation from orbits of the forecast model to orbits in nature.

Approaches*

Numerical Stage	De-biasing: "get the bias and remove it"	Representing errors: "Compensate for the missing terms"
Data assimilation	Bias in observations (Wu and Derber 1998, Y. Zhu 2014) Bias in model (Dee and DaSilva 1998, Dee 2005)	Background error covariance inflation (Li et al 2009); State-space augmentation (Baek et al 2006)
Post-DA initialization	Vortex relocation (Liu,2010), Field alignment (Hoffman et al 2005, Ravela et al 2007), flux correction (Ji et al 1998)	Ensemble generation and centering (Toth and Kalnay, Buizza and Molteni, Wang and Bishop), Vortex relocation
Time integration	Flux correction, nudging (Saha 1992, DelSole et al 2007, Danforth et al 2008)	Stochastic perturbations (Buizza 1999, Hou 2006)
Diagnostic variables	Balance requirements (Klinker and Sardeshmukh 1992), Parameter estimation methods (KF, NN)	Stochastic perturbations in coupled systems
Typical evaluation measures	RMSE, AC, Bias=first moment SE	ROC, CRPSS, Talagrand diagram or reliability diagram to detect bias.

Approaches*

I_I		
Numerical Stage	Shadowing	
Data assimilation	Pseudo-Orbit (Smith 1996, Judd and Smith 2001), Mapping (Toth and Peña 2006), State space augmentation (Baek et al 2006), Pseudo obs (Carrassi et al 2014)	
Post-DA Initialization	Anomaly Initialization in numerical climate prediction systems (Schneider et al 1998, Kirtman et al, Magnussos et al 2012)	
Time integration		
Diagnostic variables		
Typical evaluation measures		

Bias correction in DA schemes

- Bias in the observing system
 - Derber and Wu 1998, Y. Zhu et al 2013: Adaptive methods
 - Model errors assumed negligible
- Bias in the model
 - Dee and DaSilva, 1998, Dee 2005: Two steps approach. First to compute bias; second to perform bias removal and obtain analysis
 - Assumption: There exists a subset of the observing system which bias is negligible compared to forecast bias

Dee and DaSilva bias correction

Analysis equation:
$$\bar{\mathbf{x}}^a = \bar{\mathbf{x}}^f + \mathbf{K}[\mathbf{y}^o - H(\bar{\mathbf{x}}^f)],$$

K is the Kalman gain matrix. Function of Pf,R-1

First Step: Compute the bias from previous cycle

$$\begin{split} \mathbf{b}^a &= \mathbf{b}^f - \mathbf{K}_b [\mathbf{y}^o - H(\mathbf{x}^f - \mathbf{b}^f)] \\ \mathbf{K}_b &= \mathbf{P}_{bb}^f \mathbf{H}^\mathrm{T} (\mathbf{H} \mathbf{P}_{bb}^f \mathbf{H}^\mathrm{T} + \mathbf{H} \mathbf{P}_{xx}^f \mathbf{H}^\mathrm{T} + \mathbf{R})^{-1}, \qquad \mathbf{P}_{bb}^f = \alpha \mathbf{P}_{xx}^f. \end{split}$$

Second Step: Remove the bias

$$\mathbf{x}^a = (\mathbf{x}^f - \mathbf{b}^a) + \mathbf{K}_{\mathbf{x}}[\mathbf{y}^o - H(\mathbf{x}^f - \mathbf{b}^a)]$$

Accounting for model errors in an ensemble-based DA scheme

1. Covariance inflation

$$\mathbf{P}_{i}^{f} = \mathbf{M}_{\mathbf{x}_{i-1}^{a}} \mathbf{P}_{i-1}^{a} \mathbf{M}_{\mathbf{x}_{i-1}^{a}}^{T} + \mathbf{Q}$$
 (Ideal KF)

$$\mathbf{P}_{i}^{f} = \frac{1}{k-1} \sum_{i=1}^{K} (x_{i}^{f} - \overline{x^{f}}) (x_{i}^{f} - \overline{x^{f}})^{T} \qquad \text{(EnKF)}$$

$$\widetilde{\mathbf{P}}_{i}^{f} = (1 + \Delta) * \mathbf{P}_{i}^{f} = \mathbf{P}_{i}^{f} + \Delta \mathbf{P}_{i}^{f}$$

$$\square \qquad \square$$

- Q represents model error
- EnKF lacks Q
- Compensates through inflation of P

Bias correction EDAS

Covariance inflation

 Li et al 2009. EnKF with inflation can outperform variational DA bias correction approach in sparse data regions

Dense observation network: All schemes are better than the control run, Dee&daSilva gives best results (but it is expensive)

Analysis RMS error (500hPa Height) Control run 25% inflation Low-order Dee&daSilva Tiles

Sparse Observation

Initialization: Two general approaches

Fidelity

- Makes corrections to the initial conditions to stay as close as possible to nature
- Full field initialization
- Flux correction at initial time
- Field alignments

Mapping

- Maps nature's initial state into a state in the model climatology (attractor); returns to nature's attractor after integration.
- Used in simplified models
- Anomaly initialization

Initialization approaches

Magnusson et al 2012

Fig. 1 Conceptual model of the forecast strategies

Fig. 5 Time-series of the global mean sea-surface temperature and its systematic error. FullIni (red), Ucorr (green), UHcorr (blue), Anolni (pink) and reanalysis (black). 12-month running mean applied for the forecasts. The evaluation is based on 3 ensemble members

Model: ECMWF IFS (v 36r1) coupled with NEMO ocean model V3.0

Conclusions:

Best results: momentum flux correction approach

Worst: anomaly initialization

Empirical Correction Strategies

$$\dot{x} = g(x) + \epsilon$$
tendency GCM error

1) Nudging based on long term biases: $| \epsilon = -bias / \tau_R |$

$$\epsilon = -bias / \tau_R$$

2) Relaxation:

$$\epsilon = (x_c - x) / \tau_R$$

3) Nudging based on tendency errors:

$$\epsilon = \left(\frac{error}{\tau}\right)^t$$

Empirical bias-correction

General Methdology and Idealized Studies

- Leith (1978)
- Faller and Lee (1975)
- Faller and Schemm (1977)

State-Independent Correction Improves Random Error

- Johansson and Saha (1989)
- Achatz and Branstator (1999)
- Yang and Anderson (2000)
- Danforth, Kalnay, Miyoshi (2007)

State-independent Correction Does NOT Improve Random Error

- Saha (1992)
- DelSole and Hou (1999)
- DelSole, Zhao, Dirmeyer, Kirtman (2007)

Summary

- Nudging based on tendency error clearly outperforms relaxation methods and nudging based on long-term biases.
- Empirical correction reduces statistically significant biases in the COLAv3.2 and GFS temperature forecasts.
- Wind biases were marginally corrected, but are small anyway.
- Moisture biases could not be corrected significantly, but also were not amplified.
- Empirical correction had no significant impact on random errors, or on the skill of monthly means.
- Simple state-dependent corrections are not effective.

Empirical bias correction in operational settings

- State-of-the-art models are quite complex and biases are relatively small, particularly at short lead times for some variables
 - E.g. at day 10, the SE of 500hPa forecasts is about 5% of the total RMSE
- Tuning or re-tuning of parameters has been a preferred approach. This is done constantly on each new version of the prediction system.
- Short samples (e.g. a few seasons) are used to identify bias. Longer samples are used to tune coupled numerical prediction systems

Stochastic approaches

The idea is to compensate for the "missing" terms, and, thus, increase the ensemble spread (or diversify the membership)

$$e_j(T) = e_0(0) + de_j(0) + \int_{t=0}^{T} [P_j(e_j, t) + dP_j(e_j, t) + A_j(e_j, t)]dt$$

Initial perturbations

Model Tendency

Stochastic Perturbation

The model needs information about the sub-grid variability

Remaining tendency component (different

physical parameterization or multi-model)

Buizza et al 2005

Stochastic Total Tendency Perturbation

(Hou, Toth and Zhu, 2006)

NCEP operation – Feb. 2010

Formulation:

$$\frac{\partial X_i}{\partial t} = T_i(X_i;t) + \gamma \sum_{j=1,\dots,N} w_{i,j} T_j(X_j;t)$$

Simplification: Use finite difference form for the stochastic term

Modify the model state every 6 hours:

$$X_{i}^{'} = X_{i} + \gamma \sum_{j=1}^{N} w_{i,j}(t) \left\{ \left[\left(X_{j} \right)_{t} - \left(X_{j} \right)_{t-6h} \right] - \left[\left(X_{0} \right)_{t} - \left(X_{0} \right)_{t-6h} \right] \right\}$$

Where w is an evolving combination matrix, and γ is a rescaling factor.

Reference:

- 1. Hou and et al: 2008 AMS conference extended paper
- 2. Hou and et al: 2010 in review of Tellus

Snap shot of NCEP GEFS changes

Stochastic Total Tendency Perturbation (STTP) was implemented in Feb. 2010

Results using STTP on extended GEFS

Stochastic perturbations

ECMWF T850

b) Tropics NoTenPert 0.540.48 0.42 ----- SP1_I 0.36---- SP2 CRPSS 0.3 0.240.18-0.12-0.06-12 14 Forecast step (days)

NCEP U850

Diagnostic variables

An area of much development

Surface variables

- Precipitation, 2mT, surface wind, etc.
- Ensemble approaches to deal with these variables quite complex.
 - Depend on surface fluxes that are difficult to measure
 - At the boundary of two climate components with two distinct time scales
 - Local feedbacks, subgrid-scale heterogeneity
- Bias correction approaches are generally a posteriori

Climate variables

Are not purely atmospheric but depend on other climate components

It is important to represent model uncertainty in other components of the global climate system

Stochastic perturbations vs debiasing

- Inclusion of model error schemes increases the probabilistic skill score of ensemble forecasting significantly.
- They performs best in the free atmosphere
- Multi-physics schemes increases skill at the surface. Best: Combining multi-physics schemes with parameter and stochastic perturbations
- Skill benefits comparable to calibration and/or debiasing.
- Debiasing improves reliability at the expense of resolution
- The use of model-error schemes mostly improve the reliability but at the surface there is a small but significant improvement in the resolution component.

Summary

- A great deal of effort has been done to remove systematic errors a priori.
- Systematic error correction procedures are applied on each step of the numerical prediction system.
- New developments to represent model errors address forecast bias of the full PDF.

Thanks

Continuos Rank Probability Score

Quantifies the distance between two statistical objects, which can be two probability distributions or samples; or the distance between one point and a distribution

$$CRPS = \frac{1}{Cases} \sum_{i=1}^{Cases} \int_{-\infty}^{\infty} \left[F_i^{fcst}(x) - F_i^{obs}(x) \right]^2 dx$$

$$CRPSS = (C - CRPS) / C$$

ndy's ocean surface winds: 28 October 2012

miles per hour, yellow; >50 mph, orange; >60 mph, dark red.

Current model outputs look very realistic

96-h Forecast

